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Abstract—The addition of Grignard reagents to chiral trifluoromethyl tert-butyl sulfinimine–ethanol adducts affords protected tri-
fluoromethylamines in high yields with good to excellent diastereoselectivities. The stereochemical outcome of the addition is oppo-
site to that expected via a chelation controlled transition state.
� 2006 Elsevier Ltd. All rights reserved.
2

N
St-Bu

O

CF3

NH

F3C

R

St-Bu

O

3:  R =

1:  R = H

Figure 1.
The development of effective means for the synthesis of
fluorinated organic compounds is of considerable inter-
est as there are many examples wherein fluorine dramati-
cally alters the chemical and biological properties of a
molecule.1 In particular, trifluoromethyl-containing
molecules represent an especially interesting example
due to the profound properties conferred by the CF3

group.2

In connection with a current research program, we
recently required an efficient route for the preparation
of a suitably protected form of chiral 1,1,1-trifluoro-
but-3-en-2-amine 1. Despite the potential synthetic
utility of the multiple functionalities present in 1, little
synthetic effort has been reported so far for its prepara-
tion.3 Accordingly, an effective method for the introduc-
tion of the chiral amine center was paramount.

One method we considered was the addition of a vinyl
Grignard reagent to a non-racemic trifluoromethylimine
(Fig. 1).4,5 Ellman has established that chiral tert-butyl
sulfinimines are excellent substrates for the addition of
a variety of nucleophiles, yielding the desired adducts
in high diastereoselectivities.6 The tert-butyl sulfinyl
functionality also serves as a useful amine protecting
group, which can be cleaved under mildly acidic condi-
tions in high yield.7 Accordingly, we sought to adapt
this procedure to our specific requirements.
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Due to the strong electron withdrawing effects of fluo-
rine, trifluoromethylimines would be expected to exist
as their hydrated forms. We decided to take advantage
of this property by isolating the alcohol adduct of imine
2. It was hoped that this sulfinamine-acetal would be a
stable intermediate from which the imine could be liber-
ated in situ by treatment with base.

Initial attempts to condense trifluoroacetaldehyde ethyl
hemiacetal 4 with (S)-tert-butanesulfinamide 5 using
CuSO4 or MgSO4 as the promoters gave very low con-
versions after extended reaction periods. The condensa-
tion could be effectively mediated by heating a mixture
of 4 and 5 neat in Ti(OEt)4 overnight at 70 �C to afford
a crude mixture of diastereomeric products.8,9 These
diastereomers could be easily separated by normal silica
gel chromatography to provide 6a and 6b as stable crys-
talline solids in 74% isolated yield (Scheme 1). The abso-
lute stereochemistry of 6b was confirmed by single
crystal X-ray analysis.10

The reactivity of 6a/b with 2.5 equiv of vinylmagnesium
bromide was investigated as shown in Table 1.11

Reaction of diastereomer 6a or 6b in toluene at 0 �C
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for 30 min provided major diastereomer 3a in high yield
and promising selectivity (entries 1 and 2). To the best
of our knowledge, this represents the first example of
addition of a vinylmetallic reagent to a trifluoro-
methyl imine.12,13 Lowering the temperature improved
the selectivity to 16:1, but incomplete conversion at
�40 �C was noted even after 2 h (entry 4). Changing
the solvent to THF (entry 5) provided no improvement
in selectivity, but CH2Cl2 improved the diastereoselec-
tivity to 22:1, although the conversion was again incom-
plete at �40 �C (entry 6). As noted in entry 7, adding the
vinylmagnesium bromide at �30 �C allowed for com-
plete consumption of the starting material, but a lower
selectivity was observed (14:1). However, when addition
of the Grignard reagent was carried out at �40 �C and
the reaction mixture was allowed to slowly warm to
�20 �C (entry 8), complete conversion was observed
and the diastereoselectivity restored to 22:1.

It should be noted that entries 3–8 were carried out for
diastereomer 6a. When 6b was treated with vinylmagne-
sium bromide in CH2Cl2 at �40 �C, complete conver-
Table 1.

T, solvent
NH

F3C

St-Bu

OEt

O

6a/b

N

F3C

St-Bu

OEt

O

MgBr

6a'/b'

MgBr

Entry Substrate Solvent t (h)

1 6a Toluene 0.5
2 6b Toluene 0.5
3 6a Toluene 2
4 6a Toluene 2
5 6a THF 2
6 6a CH2Cl2 2
7 6a CH2Cl2 2
8 6a CH2Cl2 3
9 6b CH2Cl2 1

10 6b CH2Cl2 2

a Ratio determined by 19F NMR of the unpurified product.
b Isolated yields of analytically pure material. Yields in parentheses are base
sion was realized with a lower selectivity (14:1, entry
9). Adding the Grignard to 6b at �60 �C and allowing
the reaction to slowly warm to �40 �C (entry 10) affor-
ded 3a with similar selectivity to 6a (entries 6 and 8).

We propose that the selectivity difference between dia-
stereomers 6a/b is dependent on the temperature at
which imine 2 is generated. As illustrated in Figure 2,
it is postulated that metallated intermediate 6b 0 can
eliminate efficiently to 2 at low temperature
(>�60 �C), while 6a 0 requires higher temperature for
imine formation (>�40 �C). This was supported by var-
iable temperature 1H NMR studies in which 6a 0 (formed
via addition of 1 equiv of vinylmagnesium bromide at
�78 �C) did not lead to formation of significant levels
of 2 until the temperature approached �35 �C, consis-
tent with the reactivity profile observed in Table 1.14

In comparison, NMR analysis of 6b 0 began to show
imine formation at ��55 �C. Once liberated, imine 2
undergoes efficient addition of vinylmagnesium bromide
to provide 3.

It should be noted that the stereochemistry of the newly
formed center is S,15 which is opposite of what was pre-
dicted via a chelation controlled transition state A
(Fig. 3).16 It is likely that the bromomethoxymagnesium
species, which is produced by the additional equivalent
of Grignard reagent used to liberate the imine, coordi-
nates to the oxygen of the sulfoxide. Addition then pro-
ceeds through an acyclic transition state B, in accord
with that proposed by Davis.17
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T (�C) Ratio (SSS:SSR)a Yield (%)b

0 7:1 80
0 6:1 85

�23 11:1 78
�40 16:1 58 (71)
�40 13:1 64 (74)
�40 22:1 58 (70)
�30 14:1 68
�40 to �20 22:1 71
�40 14:1 70
�60 to �20 22:1 75

d on the recovered starting material.
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As an example of the utility of 3, we sought to prepare
dihydropyrrolidine 8 via a ring-closing metathesis
reaction.18 Careful allylation of 3a provided 7, which
underwent smooth ring closure employing catalyst 9 to
afford 8 in 95% yield (Scheme 2).

In order to further examine the scope of the addition
reaction of 6a, we substituted vinylmagnesium bromide
with other commonly available Grignard reagents
(Table 2). While the product yields were uniformly high,
the diastereoselectivity was dependent on the size of the
Grignard reagent (entries 1–4). For example, phenyl-
magnesium bromide provided a dr of 6:1, while straight
chain 3-butenylmagnesium bromide afforded product in
Table 2.

T, solven
NH

F3C

St-Bu

OEt

O

6a

R-M

Entry RM Solvent t (h) T (�C

1
MgBr

CH2Cl2 2 �40 t

2 MgBr CH2Cl2 2 �40 t

3 MgBr CH2Cl2 2 �40 t

4 MgBr CH2Cl2 2 �40 t

5 MgBr THF 0.5 �40 t

6 Li CH2Cl2 3 �40 t

a Ratio determined by 19F NMR of the unpurified product.
b Isolated yields of analytically pure material.
>30:1 diastereoselectivity.19 The low diastereoselectivity
observed with allylmagnesium bromide (entry 2) may be
attributed to an alternative intramolecular pathway.20

Surprisingly, phenyllithium (entry 6) did not yield any
desired product.

In summary, we have developed an efficient synthesis of
chiral allyltrifluoromethylamine 1 utilizing the Ellman
tert-butyl sulfinimine methodology. Sulfinamino acetals
6a/b serve as stable precursors for the in situ generation
of imine 2, which undergoes addition with Grignard
reagents in good yields with moderate to excellent
selectivity.
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o �20 10a 11:1 81

o �20 10b 5:1 98

o �10 10c >30:1 74

o �20 10d 6:1 98

o �20 10d 3.5:1 97

o 0 10d — —
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